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REPORT

Enriching the Analysis of Genomewide Association Studies
with Hierarchical Modeling
Gary K. Chen and John S. Witte

Genomewide association studies (GWAs) initially investigate hundreds of thousands of single-nucleotide polymorphisms
(SNPs), and the most promising SNPs are further evaluated with additional subjects, for replication or a joint analysis.
Deciding which SNPs merit follow-up is one of the most crucial aspects of these studies. We present here an approach
for selecting the most-promising SNPs that incorporates into a hierarchical model both conventional results and other
existing information about the SNPs. The model is developed for general use, its potential value is shown by application,
and tools are provided for undertaking hierarchical modeling. By quantitatively harnessing all available information in
GWAs, hierarchical modeling may more clearly distinguish true causal variants from noise.
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Genomewide association studies (GWAs) are quickly be-
coming a popular design for deciphering the genetic basis
of complex phenotypes. GWAs first evaluate hundreds of
thousands of SNPs across the genome and then follow up
on the most-promising SNPs. Gauging which SNPs merit
further investigation is extremely important, since SNPs
not selected could be false-negative results, whereas those
chosen could lead to false-positive associations. The con-
ventional approach entails simply selecting SNPs with the
smallest association P values from standard maximum-
likelihood tests.1 This approach, however, ignores the ex-
tensive information known about the SNPs, such as wheth-
er they are in regions previously linked or associated with
the phenotype, conserved across species, or functional.

Instead of assuming that every SNP measured in a GWA
is a priori equally likely causal, one can quantitatively in-
corporate existing information about the SNPs into the an-
alysis. For example, one can employ a false-discovery rate
on stratified data,2 rank P values on the basis of a weight-
ing function that incorporates prior information3 (e.g.,
linkage or association evidence), or weight each SNP’s as-
sociation P value by how well it tags other unmeasured
SNPs.4 P values derived from these strategies appear to give
better rankings than do conventional P values.2–4 The en-
suing ranking of results could then be used to determine
which SNPs should be further evaluated. As the dimen-
sionality of SNP information grows, however, it may be-
come increasingly difficult to evaluate data with some of
these approaches, because of sparse strata.

One can surmount this problem by moving to a hierar-
chical modeling framework that simultaneously combines
various types of a priori information. Previous theoretical
and applied work indicates the potential value of hierar-
chical modeling, especially for evaluation of large amounts
of data on a limited number of subjects (i.e., precisely the
situation faced by GWAs).5–9 Related work has also shown

how this approach can be used in association studies of
candidate genes or regions.10–15 Here, we extend this ap-
proach to GWAs; show, by example, the potential value
of hierarchical modeling; and provide tools for undertak-
ing these analyses.

To develop the hierarchical model, first assume that one
has undertaken a GWA of the relationship between an
enormous number of SNPs (M total) and a particular phe-
notype, which can be quantitative or qualitative. The SNPs
are genotyped on the initial population of study subjects
(N total individuals), and the ensuing data are analyzed
to test genomewide for the association between each of
the M SNPs and the phenotype.

If the phenotype is quantitative, one can test for an
association with the mth SNP using the linear regression

y p m � x b , (1)m m m

where is a vector of the N subjects’ phe-y p (y ,…,y )1 N

notype values, is a vector of the subjects’x p (x ,…,x )m m1 mN

genotype values for the mth SNP coded here in a log-
additive manner, bm is the regression coefficient corre-
sponding to the mth SNP, and mm is the intercept term. (If
the phenotype is qualitative, a logistic-regression model
could be used instead of a linear one.) Fitting equation (1)
to the data gives the maximum-likelihood coefficient es-
timate for the association between SNP m and the phe-b̂m

notype (our “first-stage” estimates). The statistical signif-
icance of this association can be tested with a Wald sta-
tistic, given by divided by its SE.16 The P values obtainedb̂m

in this manner across all M SNPs can then be ranked in
ascending order, to decide which SNPs to investigate
further.

As noted above, however, this conventional approach
ignores existing information about the M SNPs and as-
sumes that they are all equally likely to impact the phe-



398 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

notype. Instead, one can incorporate information about
the SNPs into a hierarchical model, in an attempt to im-
prove the ranking of the P values for association. In par-
ticular, we can add to equation (1) a second-stage linear
model for the coefficients bm

2b p Zp � U , where U ∼ N(0,t T) , (2)

where is a vector of M first-stage coefficients, Z is anb

second-stage design matrix that incorporates knownM # K
information on K factors about the SNPs, is a K-elementp

column vector of coefficients corresponding to the effects
of these K factors on the phenotype, and U is the error
term, assumed to be normally distributed with zero mean
and variance t2T. The ijth element of Z indicates whether
SNP i exhibits known factor j, such as being in a linkage
region or functional. An example Z matrix is given in table
1 (discussed in detail below). Ultimately, model (2) eval-
uates the K second-stage covariates for their effect on the
first-stage estimates through the K-element vector p, with
error term U within a multivariate regression framework.
In doing so, this higher-level model provides a “knowl-
edge-based” estimate of the SNP effects, which can be
combined with the conventional maximum-likelihood es-
timates in equation (1) to improve the ranking of results
from a GWA.

The M-dimensional second-stage variance-covariance
matrix t2T in equation (2) reflects the residual variation
in the first-stage regression coefficients after the second-
stage covariates are taken into consideration; it can be
either estimated iteratively (empirical Bayes) or prespec-
ified by an investigator (semi-Bayes).17 If the latter, t2T
should reflect the widest range of expected residual effects
remaining for each SNP. One can formulate the structure
of t2T in several ways. In the simplest case, one might
assume a common variance t2 across all SNPs, where T is
the identity matrix. Alternatively, one can model corre-
lation between nearby SNPs as a function of genetic dis-
tance by populating the off-diagonal entries of T with
positive values.13

Our implementation of t2T does not assume a correla-
tion structure among the SNPs (i.e., the off-diagonal en-
tries in T are set equal to 0). This allows for jointly ana-
lyzing a large number of SNPs with modest computational
time by substituting most matrix operations with vector
operations. Assignment of the diagonal values in t2T is
predicated on the idea that SNPs with stronger prior evi-
dence (e.g., in linked regions) should be more heavily
weighted. A general form for element tmm of the diagonal
of T for SNP m is

1
t p , (3)mm nf(z )m•e

where represents a weighting function of covariatef(z )m•

values at row m of Z, and n is a normalizing constant. One
may simply choose a column in Z that provides a reason-
able basis for weighting (e.g., prior linkage or association

scores) and assign to be the value at row m in thatf(z )m•

column of Z.
Alternatively, one might designate a prior weighting on

the basis of a composite model that includes more than
one covariate, defining as a weighted sum of thef(z )m•

covariates

K

f(Z ) p q Z , (4)�m• i mi
ip1

where K is the set of covariates with compatible units of
measure (e.g., LOD scores) and q weights the relative im-
portance of the covariates (e.g., on the basis of a factor
inversely proportional to the false-positive report proba-
bility18). A value of zero for the weighting function f(z )m•

implies that we do not believe that, beyond information
contained in Z, SNP m is more likely to be associated with
the phenotype than is any other SNP. When ,f(z ) p 0m•

equation 3 implies that the second-stage SD is equal to t,
whereas positive values reduce and negative values inflate
the second-stage SD relative to t. Thus, t serves as a base-
line residual SD for the SNP effects.

Because units of measure may vary across definitions of
, we can normalize the weighting function throughf(z )m•

the following constant, n,

2 2lnt � lnr
n p , (5)

max[f(Z )]m•

where r denotes the residual precision of our second-stage
estimate at the SNP with maximum prior evidence. This
constrains the minimum SD across all M SNPs to a value
specified by r. Like t, r can be either prespecified or es-
timated empirically.

Once Z and t2T have been specified, estimates for the
second-stage regression coefficients in model (2) are solved
through weighted least squares as

T �1 T 2 �1ˆ ˆp̃ p (Z SZ) Z Sb and S p [V � t T] , (6)

where and are the conventional maximum-likelihoodˆ ˆb V
estimates of the regression coefficients and variance-co-
variance matrix, respectively, for the M SNPs from fitting
the linear model (1). We consider the absolute values of
, because a particular allele may either increase or de-b̂

crease an individual’s risk of the phenotype.
Finally, the hierarchical modeling estimate , which canb̃

be considered a posterior estimate of association for the
M SNPs in a GWA, is determined as a variance-weighted
average of the first- (eq. [1]) and second-stage (eq. [2])
estimates of the coefficients and ,ˆ ˜b p

˜ ˆ ˆ˜b p (I � W)b � WZp and W p SV . (7)

Here, W is an M # M matrix that determines how much
the maximum-likelihood (first-stage) estimates are re-b̂

duced toward the second-stage estimates Z . In particular,p̃



Table 1. Example Second-Stage Design (Z) Matrix for Hierarchical-Modeling Approach

SNP Intercept Conservation

Indicator Variable by Functional Category

Conservation
All

SNPs

LD Sum by Functional Category

Linkage
Scores

mRNA
UTR

Nonsynonymous
Coding Intron Locus

Synonymous
Coding

mRNA
UTR

Nonsynonymous
Coding Intron Locus

Synonymous
Coding

1 1 21 0 1 0 0 0 42 2 1 0 1 0 0 4.4
2 1 32 1 0 0 0 0 31 2 0 1 1 0 0 5.5
3 1 10 0 0 1 0 0 53 2 1 1 0 0 0 4.3
4 1 15 0 0 0 1 0 0 0 0 0 0 0 0 3
5 1 14 0 0 1 0 1 0 0 0 0 0 0 0 2
6 1 9 0 0 0 1 0 0 0 0 0 0 0 0 2
7 1 31 1 0 0 0 0 84 4 0 0 2 1 1 2
8 1 31 0 0 1 0 0 84 4 1 0 0 1 1 2
9 1 31 0 0 1 0 0 84 4 1 0 0 1 1 1
10 1 31 0 0 0 1 0 84 4 1 0 2 0 0 .8
11 1 21 0 0 0 0 1 94 4 1 0 0 1 1 .2

NOTE.—Information about SNPs was obtained from existing resources. To demonstrate how one can use functional annotation among correlated SNPs, we assume that SNPs 1–3 and 7–10 are in LD ( ) with neighboring2r � 0.8
SNPs.
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Figure 1. The smallest 500 �log10 P values estimated from ordinary linear regression of the CHI3L2 gene–expression phenotype on
the genotypes of 57 CEU individuals across chromosome 1. The causal SNP rs755467 is shown at 111.48 Mb with a log10 (P value) of
7.29.

if is large relative to t2T, less weight will be given toV̂
—and more weight will be given to Z —in estimatingˆ ˜b p

(and vice-versa). Note that, whereas are not asymp-˜ ˜b b

totically unbiased estimators, extensive previous theoret-
ical and simulation work shows that are consistent es-b̃

timators, and that Wald procedures from work well inb̃

typical finite samples.5,7,9,19,20 Thus, Wald statistics testing
can be used to provide GWA rankings on the basis ofb̃

information from both maximum-likelihood estimates and
the additional information contained in the second-stage
covariates.

To demonstrate the use and value of hierarchical mod-
eling, we present two examples that are based on data
from a GWA between SNPs and gene-expression levels.21

These data include SNP genotypes from HapMap (Inter-
national HapMap Project) for 57 unrelated individuals of
European ancestry (CEU),22 the same individuals used in
the association study by Cheung et al.21 We also obtained
phenotype information about these individuals for 8,793
gene-expression levels from the Gene Expression Omni-
bus database at National Center for Biotechnology Infor-
mation (NCBI) (accession number GSE2552); data were
log2 transformed to alleviate any nonnormal characteris-
tics of the trait distributions.21

The first example highlights construction of the sec-
ond-stage design matrix Z with existing information and
how to develop a weighting function for the second-stage
covariates, as in equation 4. For focus, we studied a re-
gion on chromosome 1 where there was strong linkage
evidence and an association between the regulatory
SNP rs755467 at the chitinase 3-like 2 (CHI3L2 [MIM
601526]) promoter and the gene’s expression; this finding
was confirmed through luciferase reporter and haplotype-

specific chromatin immunoprecipitation assays.21 In light
of this finding, we assumed that rs755467 is causal for
CHI3L2 expression and then compared how well con-
ventional maximum-likelihood and hierarchical-model-
ing approaches worked to rank SNPs within the surround-
ing region.

To determine the maximum-likelihood ranking of SNPs,
we undertook ordinary linear-regression analyses of the
associations between each of 39,186 SNPs on chromosome
1 and CHI3L2 expression levels (under the assumption of
a log-additive genotypic effect). To remove correlated and
noninformative SNPs, these SNPs include those on the
Illumina 550K SNP panel that were polymorphic in the
57 CEU individuals. Results from this initial (“first-stage”)
analysis are given in figure 1. In particular, the 500 SNPs
with the smallest P values for association with CHI3L2
are plotted in red by chromosomal location, with use of
�log10 (P values), so high points indicate small P values.
The smallest association P value ( ) is for SNP�7P ! 10
rs755467 (the “causal” SNP) at 111.48 Mb near the cen-
tromere (i.e., the large gap in the center of the graph).

For the hierarchical model, we incorporated four classes
of existing information about the SNPs into a second-stage
design matrix Z: conservation, functional category, tag-
ging, and linkage. This information is incorporated into
16 columns of Z. Table 1 gives examples of this infor-
mation for 11 hypothetical SNPs. The first column of Z
corresponds to an intercept and is all ones. Column 2 of
Z quantifies prior evidence of conservation, since SNPs
within conserved regions may be more likely functional.23

These data, obtained from the conserved elements data-
base at the UCSC Genome Browser Web site, are LOD
scores computed from the phastCons program,24 which
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Figure 2. A comparison of the smallest 500 �log10 P values from the CHI3L2 example with use of hierarchical models across three
values of the SD parameter r. Larger values of r reduce the effect of reduction toward the second-stage mean at the region with strong
prior evidence (i.e., linked region in center), whereas smaller values increase the reduction.

assesses the strength of evidence of conservation across
17 species. SNPs located within any region of conserved
DNA were assigned the LOD score at that segment. Col-
umns 3–7 of the Z matrix contain indicator variables for
functional category (i.e., mRNA UTR, nonsynonymous
coding, intron, locus, and synonymous coding). Anno-
tation for all SNPs was obtained from the dbSNP, NCBI
FTP, and Ensembl sites.

Columns 8–15 in Z incorporates information on tag-
ging, since SNPs in linkage disequilibrium (LD) with many
other markers may be more likely in LD with causal var-
iants than would SNPs in LD with few markers.4 Here, we
defined SNPs in LD with a given SNP as those mapped
within a 500-kb window centered at that SNP, with 2r �

. We assigned each element in column 8 of Z as the0.8
total number (“LD sum”) of other SNPs in the entire
HapMap Phase 2 panel (International HapMap Project) in
LD with the SNP at that row.25 Columns 9–14 of the design
matrix combine the LD-sum information with the infor-
mation described for columns 2–7, to reflect the notion
that SNPs in LD with a conserved or functionally impor-
tant SNP may be distributed differently from SNPs in LD
with any SNP in general. Values in column 9 are assigned
as the sum of conservation LOD scores for SNPs in LD
with the SNP at that row. Values in columns 10–15 are
assigned as the total number of functionally annotated
SNPs in LD with the SNP at that row, where columns 10–
14 are ordered as described for columns 3–7 and column
15 represents SNPs in LD with splice-site SNPs (column
15 of Z not shown in table 1). Because these columns are
constructed from a dense HapMap SNP panel (Interna-
tional HapMap Project), these columns are particularly in-
formative when a set of SNPs chosen for analysis may not

be sufficiently annotated to warrant indicator columns.
Finally, the last column of Z incorporates prior evidence
of linkage. LOD scores were calculated as described else-
where26 from linkage analysis of 2,882 SNP genotypes to
CHI3L2 expression, with use of five CEPH families that
were unrelated to the 57 individuals in our sample; here,
we used the program SOLAR.27 LOD scores were also in-
corporated into the diagonal entries of the second-stage
covariance matrix T by assigning the weighting function

simply as the LOD score for the region in which af(z )m•

particular SNP was located.
Before fitting the hierarchical model, we first estimated

an overall second-stage SD t and a minimum SD r. Us-
ing equation (2) as the basis of a posterior distribution,
we estimated these parameters using the WinBUGS pro-
gram,28 which implements a Markov chain–Monte Carlo
(MCMC) Gibbs sampler. WinBUGS converged to estimates
of and . To assess the sensitivity of ourˆ ˆt p 0.22 r p 0.21
model to these values, we experimented with other values
as well. As can be seen from equation 7, adjusting the
value of t or r alters the degree of reduction of the first-
stage estimates toward their second-stage estimates. In
light of the highly significant LOD scores (17) for linkage
in the same region as the SNP association, the empirical
estimate of might yield a conservative weightingr̂ p 0.21
function. This likely reflects a poor fit between the large
number of high LOD scores in the Z matrix and the small
number of statistically significant SNPs at the first stage
in this dense data set. Decreasing r from 0.21 to 0.05 or
0.02 strikingly increases the influence of the LOD scores
on the top-ranked SNPs from the hierarchical model, par-
ticularly for those in the linkage region (fig. 2). A visual
inspection shows that, in contrast to , the morer p 0.02
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Figure 3. A comparison of the smallest 500 �log10 P values estimated from ordinary linear regression (in red, as shown in fig. 1) and
the hierarchical model, with estimates superimposed in blue.r p 0.05

conservative value of allows SNPs outside ther p 0.05
linkage region that may be potentially interesting to be
included in the set of top 500 candidates for follow-up
studies.

Therefore, to compare the maximum-likelihood and
hierarchical models we used parameter values of t p

and . As above, P values from Wald statistics0.22 r p 0.05
were calculated, and the top 500 SNPs (i.e., those with
the smallest P values) from each method were plotted (fig.
3). A cursory inspection of the figure shows that, in con-
trast to maximum-likelihood estimates, a larger propor-
tion of the top-ranked SNPs from the hierarchical model
are more consistently clustered around the true causal SNP,
whereas SNPs outside the linkage region are included as
well. To evaluate this phenomenon more thoroughly, we
counted the total number of SNPs that were mapped with-
in windows of various sizes centered at the causal SNP.
Figure 4 shows that, in comparison with the maximum-
likelihood approach, the hierarchical model increases the
proportion of SNPs near the causal variant that are cap-
tured, regardless of window size.

Figure 3 also shows that the top-ranked P values from
hierarchical modeling are slightly larger than those from
the single-stage maximum-likelihood approach. This is
due in part to reduction of first-stage estimates toward
their prior means and is especially apparent in the linked
region, because of the stronger effect of the weighting
function derived from linkage scores (i.e., smaller values
of tmm of T, as shown in eq. [3] for linked SNPs). Note
that, despite the smaller P values for the maximum-like-
lihood estimates, many of these putative associations may
be spurious, and following them all up may lead to in-
efficient use of genotyping resources. As illustrated by the

horizontal bar in figure 3, if one were to consider a P !

cut-off when selecting SNPs for follow-up studies, 67.001
SNPs would be selected when the maximum-likelihood
approach was used versus only 17 with the hierarchical
model.

The second example explores how information con-
tained in the hierarchical model’s second-stage design ma-
trix Z impacts the ranking of associated SNPs. Here, we
focused on the ENCODE regions, which have been rese-
quenced and thus have more-thorough SNP information
than do other regions of the genome.29 In particular, we
examined ENCODE region ENm010 (on chromosome 7),
because a conventional linear-regression analysis indicates
a strong association between SNP rs11564053 in this re-
gion and expression of the cell-cycle progression (CCPG1)
gene ( ). We evaluated the association between�30P ! 10
CCPG1’s expression and the 758 SNPs in this region on
the Illumina 550K panel.

For the hierarchical model, we constructed a second-
stage design matrix Z in the same manner as the first
example, although we did not include column 16 (i.e., the
linkage column) and other columns, because of lack of
data. From WinBUGS, the second-stage SD was estimated
as . We set , which assumes that the residualˆ ˆt p 0.55 r p t

second-stage SDs are equal across all SNPs. We then eval-
uated the sensitivity of the hierarchical model to the co-
variates included in Z. In particular, we first undertook a
hierarchal regression analysis of the association between
the 758 SNPs and CCPG1 expression, including all covar-
iates in Z. We then repeated this analysis, but now only
including in Z subsets of the covariates representing three
categories of prior information described above—conser-
vation scores (column 3), functional categories (columns
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Figure 4. Proportion of the top 500 SNPs located across windows centered at the causal variant for CHII3L2 gene expression for
ordinary linear regression and for the hierarchical model. The X-axis denotes the distance from the causal SNP to either edge of a
window.

4–6), and LD-sum columns (columns 7–12). The rankings
of all 758 SNPs that were based on each of these four Z
matrix formulations were compared against each other.
Using the Kendall-Tau statistic, a nonparametric test for
correlation, we found that rankings were significantly cor-
related ( ) between all six possible pairings of mod-�7P ! 10
els and hence did not appear to be overly sensitive to the
exact formulation of Z.

Finally, to assess whether our implementation of hier-
archical modeling would yield similar posterior estimates
to those provided by an alternate implementation, we re-
visited the model we designed in WinBUGS. Specifically,
we compared hierarchical regression coefficients as ob-b̃

tained from equations (1)–(7) versus those calculated from
WinBUGS. The second-stage coefficient estimates werep̃

estimated using both methods and substituted into equa-
tion (7) to determine . Whereas differed slightly be-˜ ˜b p

tween the two methods, they did not lead to materially
different estimates; for each of the 758 SNPs, the latterb̃

were within 1 SE of each other. Moreover, whereas some
of the estimates obtained from the two methods hadp̃

opposite signs—suggesting opposite effects on the phe-
notype—these differences appeared limited, because most
of these values of were very close to zero.p̃

There are a number of issues to consider with hierar-
chical modeling of GWAs. Specifying a comprehensive
second-stage design matrix Z for SNPs in genomic regions
with limited annotation will be difficult and can lead to
colinearity issues. Fortunately, this will become less of an
issue as annotation data become more abundant across
the genome. Moreover, our second example and previous
work9 indicate that hierarchical modeling is not overly
sensitive to the second-stage design matrix Z. One must

also be careful in specifying the second-stage residual SD
parameters t and r, which are essentially smoothing pa-
rameters. These parameters influence posterior estimates
of the disease effects by reducing the variance inherent in
maximum-likelihood estimates at the cost of introducing
some bias.19 However, for relatively small-scale epidemi-
ologic studies, introducing a certain degree of bias from
informative priors can be well justified.30 Multiple poten-
tial values should be considered in the evaluation of the
sensitivity of one’s results to the second-stage parameter
estimation or specification. One can estimate these with
an empirical Bayes approach,7 although we found that
doing so resulted in setting them to zero values. Hence,
we simply prespecified them with a semi-Bayes approach.
We found that an MCMC approach provided us with good
starting values for the unknown parameters. Here, visual
inspection and subject-matter knowledge about potential
residual associations for the SNPs can also help guide sen-
sible values for t and r.30 For example, given a predeter-
mined number of top-ranked SNPs that can be selected
for further study, one might specify a value of r that leads
to selection of a certain proportion of SNPs in regions with
the strongest a priori evidence of association.

In summary, we have illustrated how a hierarchical meth-
od can be used to help determine an optimal ranking of
SNPs for follow-up in GWAs. By including existing infor-
mation and borrowing strength from similarities among
SNPs in a hierarchical model, one can enrich the overall
GWAs signal. We provide resources on the J.S.W. lab home
page to help facilitate the development of these models.
Future work can use these tools to further study the prop-
erties of hierarchical modeling and to apply this approach
to GWAs.
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Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi (for phenotype data about 57 CEU individuals
[accession number GSE2552])

International HapMap Project, http://www.hapmap.org/
downloads/index.html.en (for genotype and LD data about
SNPs)

J.S.W. lab, http://www.epibiostat.ucsf.edu/witte_lab/
NCBI FTP, http://www.ncbi.nlm.nih.gov/Ftp/
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/ (for CHI3L2)
UCSC Genome Browser, http://genome.ucsc.edu/cgi-bin/hgTables

?commandpstart (for SNP-conservation)
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